CHROM. 14,135

Note

Separation of cyclic sulphur-nitrogen compounds by high-performance liquid chromatography. LXXVIII*

RALF STEUDEL* and DORIS ROSENBAUER

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12 (G.F.R.) (Received June 29th, 1981)

The cyclic sulphur imides of type $S_n(NH)_{8-n}$ with n = 1, ..., 4 as well as the related compounds S_8 and S_4N_4 are formed upon reaction of sulphur chlorides with ammonia as well as in other reactions². Separation of the complex reaction mixtures by thin-layer and column chromatography on silica gel has been reported², but a quantitative determination of the components by weighing is difficult due to incomplete separation of some isomeric compounds on a preparative scale. Furthermore, the use of the toxic carbon disulphide as an eluent causes problems. We report here a rapid separation of several structurally related cyclic sulphur-nitrogen compounds by high-performance liquid chromatography (HPLC) using solvents of low toxicity.

EXPERIMENTAL AND RESULTS

The compounds investigated were prepared by standard methods², and their purity checked by infrared and Raman spectra as well as by the melting points. A Varian 5020 liquid chromatograph equipped with a Waters UV detector (254 nm) and a Varian CDS-111 L data system and recorder was used. The sample volume was 10 mm³ throughout (Valco loop injector). Waters Radial-Pak columns (10 cm \times 8 mm I.D.) with C₁₈ and SiO₂, respectively, were employed (particle size 10 μ m).

Table I and Fig. 1 show the compounds investigated. In most cases SiO₂ was superior to C_{18} as a stationary phase, but sulphur-rich compounds like $S_{15}N_2$ and $S_{16}N_2$, due to their low solubility in polar solvents, could only be separated by reversed-phase chromatography (Table I). Even the ionic compound $NH_4[S_4N_5O]^3$ showed a considerable retention on SiO₂ on elution with pentane-methanol (75:25) (retention time, 3.7 min; flow-rate, 1 cm³/min).

In general it can be said that cyclic SN compounds can easily be separated by HPLC. Because of the high absorbance at 254 nm caused by the sulphur atoms⁴, a minute amount of substance is needed, and solvents of low cost and toxicity can be used. Small and polar molecules are separated best on SiO₂, while for larger and less polar substances C_{18} columns are necessary. After appropriate calibration a quantitative analysis is possible⁴. HPLC thus provides a means to optimize preparative reaction conditions and to search for new compounds in complex reaction mixtures.

^{*} For Part LXXVII, see ref. 1.

TABLE I

RETENTION TIMES (1) OF CYCLIC SULPHUR–NITROGEN COMPOUNDS UNDER VARIOUS CONDITIONS

Column and eluent	Compounds	t (min)	Flow-rate (cm ³ /min)
SiO ₂ , pentane-methanol (90:10)	S ₈	2.95	03.5 min: 1.0
	S ₇ NCH ₃	3.12	$3.5-9.0 \text{ min}: 1.0 \rightarrow 2.0$
	S ₄ N ₄	4.82	9.0-25 min: 2.0
	S ₇ NH	5.47	
Dead time	$1,3-S_6(NH)_2$	8.62	
<i>ca.</i> 2.2 min at flow-rate 1.0 cm ³ /min	$1,4-S_6(NH)_2$	10.47	
	$1,5-S_6(NH)_2$	10.86	
	$S_4(NH)_4$	20.46	
	(dissolved in eluent)		
C ₁₈ , pentane-methanol (80:20)	S ₇ NH	2.4	1.0
	S7NCOCH3	3.29	
	S ₈	3.79	
	(dissolved in eluent)		
C ₁₈ , pentane-methanol (30:70)	S ₁₅ N ₂	10.40	1.0
	$S_{16}N_{2}$	12.35	
	(dissolved in CS ₂)		

Fig. 1. Chromatogram of a mixture of S_8 and seven sulphur-nitrogen compounds using SiO₂ as a stationary phase and pentane-methanol as the eluent (see Table I, upper part). $1 = S_8$; $2 = S_7$ NCH₃; $3 = S_4N_4$; $4 = S_7$ NH; $5 = 1,3-S_6$ (NH)₂; $6 = 1,4-S_6$ (NH)₂; $7 = 1,5-S_6$ (NH)₂; $8 = S_4$ (NH)₄.

ACKNOWLEDGEMENTS

Support by the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie is gratefully acknowledged.

REFERENCES

- 1 R. Laitinen, N. Rautenberg, J. Steidel and R. Steudel, Z. Anorg. Allg. Chem., in press.
- 2 H. G. Heal, The Inorganic Chemistry of Sulfur, Nitrogen, and Phosphorus, Academic Press, London, 1980.
- 3 P. Luger, H. Bradaczek and R. Steudel, Chem. Ber., 109 (1976) 3441.
- 4 R. Steudel, H.-J. Mäusle, D. Rosenbauer, H. Möckel and T. Freyholdt, Angew. Chem., 93 (1981) 402; Angew. Chem., Int. Ed. Engl., 20 (1981) 394.